
CHARON System–Framework for Applications
and Jobs Management in Grid Environment

Jan Kmuníček,1,2 Petr Kulhánek,1,3 and Martin Petřek1,3

1. CESNET z.s.p.o., Zikova 4, CZ-16000 Praha, Czech Republic
2. Institute of Computer Science, Masaryk University, Botanická 68a, CZ-60200 Brno,

Czech Republic
3. National Centre for Biomolecular Research, Faculty of Science, Masaryk University,

Kotlářská 2, CZ-61137 Brno, Czech Republic

Abstract

We present a generic system for utilization of application programs in the
EGEE Grid environment–the CHARON system. Charon was developed by
computational chemistry community in the Czech Republic to provide easily
manageable, comfortable, and modular environment to fulfill specific
requirements of computational chemistry application users. It currently offers
an alternative to standard LCG/EGEE UI environment in application-generic
Virtual Organization for Central Europe (VOCE). Present-day implementation
of Charon system is completely compatible with scripting roots of the EGEE
Grid environment, provides comfort computational jobs management by
encapsulation of available LCG/EGEE middleware environment, support for
smooth administration of large amount of computational jobs and also enables
easy retracing of already finished calculations. Compared to widespread
graphical user interfaces (e.g. portals) Charon is oriented towards users
requiring simple but feature-rich and powerful command line and scripting
interface that offers support for tens to hundreds of jobs within a single
research project. Taking into account the cornerstones on which the system is
built - modularity and generality - it is not targeted only for molecular
modeling purposes but it also represents a generic application framework
easily adaptable for broad set of generic application areas and their specific
programs. Moreover Charon also permits utilization of resources from non-
EGEE Grids. Therefore it is expected to be one of useful tools available for
promoting usage of Grid environments for general purposes.

1 Introduction

Job submission and its subsequent management are crucial tasks for successful
utilization of cluster and/or grid environments that are controlled by various batch
systems (PBSPro,1 OpenPBS,2 LSF,3 scheduling components of grid middleware such
as Globus,4 LCG,5 gLite,6 and others). Each batch system has unique tools and
different philosophy of its utilization. Moreover, the provided tools are quite raw and
users have to perform many additional tasks to use computer resources properly.
Since end-users of clusters and/or grids are more interested in some particular
scientific problems, the difficult use of batch system might have a negative impact on
the efficiency of resource utilizations and therefore on studied scientific problems.
The introduced Charon System represents one possible solution of problems
associated with the utilization of low-level batch system commands.

Charon System is the heart of the Charon Extension Layer7 (CEL). The Charon
Extension Layer is a command line interface (CLI) that consists from two
subsystems: Module System and Charon System (Fig. 1). Module system is used for
the management of installed application programs. It solves problems connected with
execution of applications on machines with different hardware or operation systems
and it is also able to simply execute applications in parallel environments. Charon
System is a specific application managed by Module System, which introduces a
complete solution for job submissions and managements. These two parts form
together a unique and consistent solution not only for job submission and
management but also for easy job preparations.

Fig. 1: Charon Extension Layer built from Module System and Charon System.

2 Charon Extension Layer

2.1 Module System

The utilization of application software does not introduce any problems till
different versions of the same application are required to be installed on the same host
or if two different applications provide programs with the same name. Described
situation is very common, especially in scientific community, and there have to be
used some tools solving aforementioned problems. Well known solution is
Environment Modules Project (EMP).8 This project provides tools for the dynamic
modification of a user's environment via modulefiles. The modulefile contains the
information needed to configure the shell for an activated application. However, the
solution provided by EMP has several drawbacks. It is very difficult to solve
problems with the same application that was built for different target architectures or
operation systems. The second problem appears if parallel execution is also required.
These issues are usually solved by different modulefiles, which describe particular
cases. This approach solves the problem, but it is very confusing for users. We
developed Module System, which uses basic ideas from EMP, but in addition solves
all the drawbacks mentioned above.

Module System introduces abstract services for the management of application
software within CEL. Each application software is described by a module in Module
System. The module contains all information that is necessary for work with a
particular software (e.g. PATH setup, additional environment setup, etc.). This
information is provided for all application's builds including different versions or
target architectures or parallel environments. This information is addressed by module
name. The module name consists of four parts describing: application's name,
application's version, target architecture, and parallel environment for application

execution. The module name containing all these four parts uniquely describes one
particular application build (so-called realization). Examples are shown in Tab. 1.

Full Module Name (Realization) Description

amber:8.0:xeon:shmem
Amber simulation package, version 8.0, optimized for
Intel Xeon processors, parallel execution is enabled via
shared memory device of mpich library.

turbomole:5.6:i686:single Turbomole package, version 5.6, optimized for i686
architecture with sequential execution.

Tab. 1: Examples of names of Module Realizations.

Up to this point, EMP approach and Module System approach are similar.

However, the separation of module name into four parts enables only selected
subparts of module name to be specified by an end-user. The missing parts are then
automatically selected by Module System from either default (predefined) values or
from result of automatic procedures, which selects the best existing application
realization for provided computational resources. This procedure is shown in Fig. 2.
Described module naming technique brings excellent flexibility of system. If the users
specified only application name (and optionally application version) in their job
scripts, the very same script can be used without any modification on various
platforms or in sequential or parallel execution. Information about currently
accessible resources is partially provided by Module System itself and partially by
user through Charon System at the time of job submission (this will be described later
in chapter 2.2).

amber => amber:8.0:auto:auto => amber:8.0:xeon:single

(user specification) (completion by default setup) (final name resolved according to current
available computational resources)

Fig. 2: Example of module name completion.

Module System provides several commands. Aside from several administrative

commands, two commands are important from the user point of view. module
command provides both informational and executive services. It is able to list
available and activated applications and, moreover, further information about Module
System. It also modifies shell environment if user wants to activate specified
applications. The second command is modview. This command alters the setup of
Module System used in informational services, e.g. user can change output colors of
printed information and other items.

Module configuration information is stored internally in XML format that makes
setup of Module System very straightforward. An example of such file for Charon
System is shown in Fig. 3. Module System is able to modify shell environmental
variables (set, prepend and append modes for variables containing items separated by
colon) or execute scripts during loading or unloading module. Moreover information
about possible conflicts or dependencies between modules might be used in
configuration file. Module System does not use these files directly, instead, they are
cached into one file, which is then finally processed by the system.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- charon module config -->
<module name="charon">
 <realization ver="0.8" arch="i686" par="single">
 <variable name="CEL_PACKAGE_DIR"
 value="$SOFTREPO/charon/0.8/i686/single"
 operation="set" priority="modaction"/>
 <variable name="CEL_STAMP_VALUE"
 value="charon:0"
 operation="set" priority="modaction"/>
 <variable name="PATH"
 value="$SOFTREPO/charon/0.8/i686/single/bin"
 operation="prepend"/>
 <variable name="CHARON_ROOT"
 value="$SOFTREPO/charon/0.8/i686/single"
 operation="set"/>
 <script name="$SOFTREPO/charon/0.8/i686/single/bin/_charon_init"
 type="inline"/>
 </realization>
 <default ver="0.8" arch="auto" par="auto"/>
</module>

Fig. 3: Example of module configuration file for Charon System.

Other configuration files in XML format are used for additional settings. One of
them contains translation rules among various target architecture names (e.g. rules
describing compatibility among various architectures) and rules for choice of parallel
mode names if parallel execution is possible (NCPU > 1). For information purposes,
Module System uses configuration file with the specification of categories to which
applications belong. This file also contains the setup for the visualizations of list of
available and activated applications (colors, section delimiters, etc.).

All the above-mentioned things work nicely in environments that are able to
operate with shared volumes over all worker nodes. This architecture is usually
available in smaller grid or cluster environments. Unfortunately, this is not feasible in
larger grids because sub-sites are well separated and only limited number of services
can be used to inter-operate among them. In the latter case, Module System had to be
extended in such a way that these problems were eliminated. New feature was added
to the system: modactions. A modaction represents the execution of script when
predefined action is performed with module command. Each action can have its own
modaction that is determined in appropriate configuration file.

Modaction script for module activation was used to solve above discussed
problem. This script behaves differently on user interface (UI), on which it does not
perform any action because Module System can operate with realizations stored on
local file system, and on worker node (WN). On worker node, it checks if activated
realization has been already installed in temporary software repository. If not, it
downloads particular package from storage element and installs it to this repository.
Set of accompanied administrative commands was written. These commands use
software repository on local UI file system to build the mirrored version stored on
storage element. The last thing that had to be solved was the installation of Module
System itself on worker node. This task is performed with wrapper script of Charon
System that downloads package containing core services–commands, module
databases and configuration files and initializes them before user's script execution.

2.2 Charon System

Charon System is used for computational job submission and its subsequent
management by an end-user. To simplify job submission as much as possible, the
solution of two problems was determined to be very important. Firstly, common user

is not happy to specify files that form input or output sandbox. The latter is especially
crucial because if some important file is omitted in that specification then the result of
such calculation is meaningless even if the calculation succeeds. Secondly, the user
preferably does not want to remember complicated specification of computational
resources.

The first described problem is solved by Charon System in such a way that all job
data have to be in one directory–the job directory. Charon System then considers all
files in the job directory (recursively) as input files and when calculation is finished
all data in the job directory are considered as results (also recursively). In the job
directory, at least one shell script has to exist. Charon System then executes this script
on worker node. The second problem is solved with aliases. User can define by palias
command alias that specifies all required resources and properties of worker nodes.
The name of alias is then used during job submission. Examples of aliases are shown
in Tab. 2.

PBS batch system

alias queue/VO syncmode properties resources

nfast ncbr sync lcc#xeon -

mopac ncbr sync - nodes=perian16.ics.muni.cz:ppn=1:per#p3

LCG middleware

alias queue/VO syncmode properties resources

skurut voce gridcopy - skurut17.cesnet.cz:2119/jobmanager-lcgpbs-voce

Tab. 2: Examples of aliases.

Each alias can describe required queue (PBS batch system) or virtual organization

(LCG middleware), syncmode, properties, and resources. Properties describe worker
node features for PBS batch system. In the case of LCG middleware, they are
equivalent to requirement item from Job Description Language (JDL). In comparison
with properties, resources determine more precisely required worker nodes. In above
examples, mopac alias forces execution on worker node perian16.ics.muni.cz. This is
used for jobs that use mopac application because it is licensed only for this particular
node. In the scope of LCG middleware, resources determine target computing
element.

An important item of alias definition is syncmode. This item determines how
Charon System operates with input and output sandboxes (e.g. with contents of job
directory). Current implementation recognizes following syncmodes for PBS-like
batch systems: local, sync, nosync, and nocopy. local is very special syncmode
because it also specifies resources in such a way that job is executed on the same host
and in the same directory as job input directory. This is useful if large amount of data
has to be analyzed. User copies that data to scratch directory on free worker node and
then it starts job on such node. This mode is valuable only on small clusters because
on larger sites it is problem to find free worker node. sync mode copies the contents of
job input directory to worker node and after job execution the contents of job
directory on that node is copied back. In nosync mode, the backward movement of
data is not performed. nocopy mode does not copy data between job input host and
worker nodes. In this case, it is required that input job directory is on volume which is

also accessible from worker nodes. nocopy mode is mainly used for parallel execution
of some chemical applications which requires shared data among all processes. The
situation on sites utilizing LCG middleware is less complicated. In that case, Charon
System uses only two syncmodes: gridcopy and stdout. gridcopy is equivalent to sync
mode but data transfer is mediated through storage element. stdout copies content of
job input directory through storage element to worker node and when a job is
terminated only file that contains standard output from job script executions is copied
back.

Job submission is performed by psubmit command. This command has two
mandatory parameters. First parameter specifies required resources. User can specify
either queue/VO or existing alias. The second parameter is the name of job script or
job input file if automatic detection of job type is enabled. Two additional parameters
are optional. The third parameter determines number of required CPUs and the fourth
overwrites syncmode taken from default setup or from alias. Example of job script
and its submission is shown in Fig. 4.

[jobdir]$ ls
 md_test prod001.crd prod.in solv.top

[jobdir]$ cat md_test
 # example of MD simulation
 # activate AMBER package
 module add amber
 # do MD simulation with sander module of AMBER
 sander -i prod.in -p solv.top -c prod001.crd \
 -o prod.out -r prod.rst -x prod.traj

[jobdir]$ psubmit voce md_test

Fig. 4: Example of job submission.

It is important to repeat here that if parallel execution of sander program is

required in the aforementioned job then only one item has to be changed. This is the
number of required CPUs provided as the third parameter of psubmit command.

Charon System creates several runtime files in job directory which can be further
used in job monitoring. For these purposes, pinfo and pgo commands can be used.
pinfo command shows current status of job, e.g. when job was submitted, started, and
finished. The output also contains summary of required resources at the job
submission time. pgo command can be used only on clusters using PBS-like batch
systems. This command will log user on worker node and change current directory to
job directory if job is running or if job was terminated but job results were left on
worker node (nosync mode). This is very useful because the user is able to monitor
the job progress on-line.

When the job is terminated then the results have to be obtained. sync mode
automatically copies results back. For gridsync and stdout modes, this has to be
performed explicitly by psync command.

3 Sites Using Charon

Charon Extension Layer is installed on several clusters and grids. There are
installations on two small clusters at the National Centre for Biomolecular Research.9
These clusters are used by Laboratory of Computational Chemistry for post-

processing of data obtained on other larger computational facilities. These are
METACentrum10 and Virtual Organization for Central Europe (VOCE).11 Charon
Extension Layer provides the same interface for job submission among these sites.
This enables easy utilizations of resources provided by completely different
architectures.

METACentrum covers majority of activities concerning super-, cluster- and grid
computing and/or high performance computing in general in the Czech Republic. The
aim of the METACentrum project is management of current computational resources
and also their extension, in cooperation with the largest academic computing centers
in the Czech Republic. At the end of 2005, the computational resources available in
METACentrum range from PC clusters to SMP systems and provide about 500 CPUs.

VOCE is a computing service, which has been established in order to directly
support Central European researchers' needs in the area of Grid computing. The
Central European region is currently formed by Austria, Czech Republic, Hungary,
Poland, Slovakia and Slovenia as defined in the EGEE Technical Annex. At the end
of 2005, the computational resources available in VOCE are equivalent to about 500
CPUs.

4 Application Software

We are building Common Software Repository for all covered sites. We try to
keep this repository the same as possible on all sites. However there are some
differences, which mainly result from license restrictions. Partial list of applications in
Common Software Repository is shown in Tab. 3.

Application META VOCE Description
amber12 I I molecular dynamics simulations
autodock13 I I docking of flexible ligands to static proteins
babel14 I I conversion program among various chemical structural formats
caver15 P I analysis of access pathways to active sites in proteins
cpmd16 I T ab initio Car-Parrinello molecular dynamics
dalton17 I T quantum mechanics calculations
delphi18 I I numerical solutions of the Poisson-Boltzmann equation
gaussian19 I - quantum mechanics calculations
gnuplot20 I I scientific data and function plotting utility
gromacs21 I P molecular dynamics simulations
qhull22 I I calculations of convex hull, Delaunay triangulation, etc.
mopac23 I P semiempirical quantum mechanics calculations
molscript24 P I visualizations of molecular structures
povray25 P I rendering program
turbomole26 I I quantum mechanics code optimized for Intel architecture

Tab. 3: Partial list of applications managed by Module System.
 I – installed; P – planned; T – in testing;

5 Conclusion

Charon Extension Layer presents a generic, uniform, and modular approach for
job submission and management in a wide range of grid environments. It has been
successfully implemented and tested in VOCE (Virtual Organization for Central
Europe) using LCG middleware, in METACentrum (Czech national grid project)
using PBSPro batch system, and in sets of local PC clusters using OpenPBS batch
system. It consists of two co-operating subsystems: Module System and Charon
System. Their tight interconnection enables to provide following set of main features:
encapsulation of a single computational job; minimization of overhead resulting from
direct middleware use (JDL file preparation, etc.); an easy submission and navigation
during job lifetime; powerful software management together with comfortable
enlargement of available application portfolio; and fast innovation in the development
of new computational methods and techniques. Moreover, CEL does not restrict the
utilization of the native grid midleware and/or web based approaches in any way.

Acknowledgments. Financial support from the Ministry of Education, Youth, and
Physical Training of the Czech Republic (contract number MSM0021622413) and
from European Commission (the EGEE project - contract number IST-2003-508833)
is gratefully acknowledged. We also thank to Luděk Matyska and Jaroslav Koča for
their valuable advices and support.

References

1. PBSPro, http://www.altair.com/software/pbspro.htm
2. OpenPBS, http://www.openpbs.org/
3. LSF, http://www.platform.com/Products/Platform.LSF.Family/home.htm
4. Globus, http://www.globus.org/
5. LCG, http://lcg.web.cern.ch/LCG/
6. gLite, http://glite.web.cern.ch/glite/
7. Charon Extension Layer, http://egee.cesnet.cz/en/voce/Charon.html
8. Environment Modules Project, http://modules.sourceforge.net/
9. NCBR, http://www.ncbr.chemi.muni.cz/

10. METACentrum, http://meta.cesnet.cz/
11. VOCE, http://egee.cesnet.cz/en/voce/index.html
12. Amber, http://amber.scripps.edu/
13. AutoDock, http://www.scripps.edu/mb/olson/doc/autodock/
14. Babel, http://smog.com/chem/babel/files/
15. CAVER, http://viper.chemi.muni.cz/caver/
16. CPMD, http://www.cpmd.org/
17. Dalton, http://www.kjemi.uio.no/software/dalton/dalton.html
18. DelPhi, http://trantor.bioc.columbia.edu/delphi/
19. Gaussian, http://www.gaussian.com/
20. Gnuplot, http://www.gnuplot.info/
21. Gromacs, http://www.gromacs.org/
22. Qhull, http://www.qhull.org/
23. Mopac, http://www.cachesoftware.com/mopac/index.shtml
24. Molscript, http://www.avatar.se/molscript/
25. POV-Ray, http://www.povray.org/
26. Turbomole, http://www.cosmologic.de/turbomole.html

